$\gamma = 107.895 \ (11)^{\circ}$

V = 1898 (3) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.03 \text{ mm}$

13255 measured reflections 6625 independent reflections

4497 reflections with $I > 2\sigma(I)$

 $\mu = 0.66 \text{ mm}^{-3}$

T = 100 K

 $R_{\rm int} = 0.072$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Bis(thiocyanato- κN)tetrakis(3,4,5-trimethyl-1*H*-pyrazole- κN^2)nickel(II)–3,4,5-trimethyl-1*H*-pyrazole (1/1)

Moayad Hossaini Sadr,^a* James T. Engle,^b Christopher J. Ziegler,^b Behzad Soltani^a and Zahra Mousavi^a

^aDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, and ^bDepartment of Chemistry, University of Akron, Akron, Ohio 44325, USA Correspondence e-mail: sadr@azaruniv.edu

Received 29 September 2011; accepted 7 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.009 Å; R factor = 0.073; wR factor = 0.240; data-to-parameter ratio = 15.1.

In the title compound, $[Ni(NCS)_2(C_6H_{10}N_2)_4]\cdot C_6H_{10}N_2$, the asymmetric unit comprises a Ni^{II} complex and a co-crystallised molecule of 3,4,5-trimethyl-1*H*-pyrazole (PzMe₃). The Ni^{II} atom is coordinated by four PzMe₃ molecules and two thiocyanate anions to define a *trans* N₄S₂ distorted octahedral geometry. A number of intramolecular N-H···N, N-H···S and C-H···N interactions contribute to the stability of the complex. The crystal structure is stabilized by intermolecular N-H···S interactions, which link neighbouring molecules into chains along the *a* axis.

Related literature

For some background to imidazole in coordination chemistry, see: Hossaini Sadr et al. (2004, 2006, 2008); Wriedt et al. (2010).

Experimental

Crystal data

 $[Ni(NCS)_{2}(C_{6}H_{10}N_{2})_{4}] \cdot C_{6}H_{10}N_{2}$ $M_{r} = 725.67$ Triclinic, $P\overline{1}$ a = 8.640 (8) Å b = 12.561 (11) Å c = 19.30 (2) Å $\alpha = 101.815$ (15)° $\beta = 98.817$ (16)°

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.879, \ T_{\max} = 0.981$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.073$	439 parameters
$vR(F^2) = 0.240$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.78 \text{ e} \text{ Å}^{-3}$
625 reflections	$\Delta \rho_{\rm min} = -1.31 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Ni1-N1	2.071 (5)	Ni1-N6	2.111 (5)
Ni1-N2	2.065 (5)	Ni1-N8	2.120 (5)
Ni1-N3	2.128 (5)	Ni1-N10	2.108 (5)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
N5-H5···N11	0.86	2.15	2.970 (8)	159
$N7 - H7 \cdot \cdot \cdot S2^{i}$	0.86	2.66	3.441 (6)	152
$N9-H9 \cdot \cdot \cdot S1^{ii}$	0.86	2.59	3.348 (6)	148
$N12-H12 \cdot \cdot \cdot S1$	0.86	2.49	3.292 (7)	156
$C3-H3A\cdots N2$	0.98	2.57	3.338 (9)	135
$C14 - H14A \cdot \cdot \cdot N1$	0.98	2.50	3.324 (9)	141
C20-H20A···N1	0.98	2.49	3.371 (8)	150
$C21 - H21A \cdots N2$	0.98	2.48	3.326 (8)	145

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This research was supported by Research Fund Number 403/313 from the Azarbaijan University of Tarbiat Moallem.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2796).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). *Polyhedron*, **25**, 3285–3288.

Hossaini Sadr, M., Soltani, B., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, m109.

Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wriedt, M., Jess, I. & Näther, C. (2010). Acta Cryst. E66, m781.

Acta Cryst. (2011). E67, m1603-m1604 [doi:10.1107/S1600536811041419]

trans-Bis(thiocyanato- κN)tetrakis(3,4,5-trimethyl-1*H*-pyrazole- κN^2)nickel(II)-3,4,5-trimethyl-1*H*-pyrazole (1/1)

M. Hossaini Sadr, J. T. Engle, C. J. Ziegler, B. Soltani and Z. Mousavi

Comment

Complexes of pyrazole-based ligands are a frequent subject of chemical investigations and are used to better understand the relationship between structure and activity in the active sites of metalloproteins (Wriedt *et al.*, 2010). Currently, there is interest in designing various pyrazole-derived ligands with specific structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site. In our systematic studies on transition metal complexes with pyrazole derivatives (Hossaini Sadr *et al.*, 2004; Hossaini Sadr *et al.*, 2008; Hossaini Sadr *et al.*, 2006), the title compound was prepared and its X-ray crystal structure was determined.

The asymmetric unit of the title complex, Fig. 1 and Table 1, comprises one molecule of the complex and a co-crystallized pyrazole ligand. The geometry around Ni is that of distorted octahedron and is coordinated by four 3,4,5-trimethyl-3*H*pyrazole molecules and two thiocyanate anions. A number of intramolecular N—H···N, N—H···S and C—H···N interactions contribute to the stability of the complex. The crystal structure is stabilized by intermolecular N—H···S interactions which link neighbouring molecules into chains along the *a* axis (Fig. 2 and Table 2).

Experimental

To a mixture of NiCl₂.6H₂O (0.1 g, 1 mmol) and Pz(Me)₃ (0.185 g, 4 mmol) in acetone (30 ml), KSCN (0.08 g, 2 mmol) was added and the mixture was stirred for 12 h. The resultant solution was then filtered. The filtered solution was then stored for three days at 269 K after which blue plates formed.

Refinement

All C-bound H atoms were positioned geometrically with C—H = 0.98 Å and included in a riding model approximation with U_{iso} (H) = 1.5 U_{eq} (C). The N-bound H atoms were located from the difference Fourier map but were fixed with N—H = 0.86 Å, and refined with U_{iso} (H) = 1.2 U_{eq} (N).

Figures

Fig. 1. Molecular structure of the asymmetric unit in the title compound showing 40% probability displacement ellipsoids and the atomic numbering. H atoms have been removed for reasons of clarity.

Fig. 2. A partial packing diagram of the title compound viewed down the *b* axis showing an extended chain along the *a* axis through N—H···S interactions (dashed lines). Only the H atoms involved the H-bonding are shown.

trans-Bis(thiocyanato- κN)tetrakis(3,4,5-trimethyl-1*H*- pyrazole- κN^2)nickel(II)–3,4,5-trimethyl-1*H*-pyrazole (1/1)

Crystal	data
---------	------

$[Ni(NCS)_2(C_6H_{10}N_2)_4] \cdot C_6H_{10}N_2$	Z = 2
$M_r = 725.67$	F(000) = 772
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.270 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.640 (8) Å	Cell parameters from 2348 reflections
b = 12.561 (11) Å	$\theta = 2.2 - 23.6^{\circ}$
c = 19.30 (2) Å	$\mu = 0.66 \text{ mm}^{-1}$
$\alpha = 101.815 \ (15)^{\circ}$	T = 100 K
$\beta = 98.817 (16)^{\circ}$	Plate, blue
$\gamma = 107.895 \ (11)^{\circ}$	$0.20 \times 0.20 \times 0.03 \text{ mm}$
V = 1898 (3) Å ³	

Data collection

Bruker APEXII CCD diffractometer	6625 independent reflections
Radiation source: fine-focus sealed tube	4497 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.072$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.879, T_{\max} = 0.981$	$k = -14 \rightarrow 14$
13255 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.073$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.240$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.1309P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
6625 reflections	$(\Delta/\sigma)_{max} < 0.001$
439 parameters	$\Delta \rho_{\text{max}} = 0.78 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.31 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. Estimated minimum and maximum transmission: 0.5159 0.7457

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.82210 (8)	0.80401 (6)	0.72446 (4)	0.0256 (2)
S1	0.23581 (18)	0.61334 (13)	0.71314 (9)	0.0378 (4)
S2	1.41564 (18)	0.96437 (13)	0.82925 (8)	0.0377 (4)
N1	1.0794 (6)	0.8855 (4)	0.7525 (2)	0.0309 (11)
N2	0.5670 (6)	0.7197 (4)	0.7044 (2)	0.0314 (11)
N3	0.8625 (6)	0.6637 (4)	0.7608 (2)	0.0270 (10)
N4	0.9828 (6)	0.6877 (4)	0.8216 (2)	0.0305 (11)
H4	1.0376	0.7567	0.8491	0.037*
N5	0.7197 (6)	0.8244 (4)	0.8696 (2)	0.0285 (10)
Н5	0.6683	0.7505	0.8556	0.034*
N6	0.8146 (6)	0.8857 (4)	0.8304 (2)	0.0310 (11)
N7	0.6340 (6)	0.9627 (4)	0.6944 (2)	0.0314 (11)
H7	0.5738	0.9364	0.7229	0.038*
N8	0.7747 (6)	0.9386 (4)	0.6841 (2)	0.0305 (11)
N9	0.9785 (5)	0.7043 (4)	0.6119 (2)	0.0282 (10)
Н9	1.0544	0.7099	0.6483	0.034*
N10	0.8375 (6)	0.7269 (4)	0.6191 (2)	0.0302 (11)
C1	0.4274 (7)	0.6768 (4)	0.7076 (3)	0.0251 (12)
C2	1.2198 (7)	0.9184 (4)	0.7837 (3)	0.0270 (12)
C3	0.6728 (7)	0.4835 (5)	0.6679 (3)	0.0352 (14)
НЗА	0.6323	0.5387	0.6484	0.053*
H3B	0.5802	0.4272	0.6793	0.053*
H3C	0.7174	0.4427	0.6315	0.053*
C4	0.8071 (7)	0.5473 (5)	0.7351 (3)	0.0291 (12)
C5	0.8928 (7)	0.4983 (5)	0.7804 (3)	0.0299 (13)
C6	0.8723 (8)	0.3719 (5)	0.7691 (4)	0.0442 (16)
H6A	0.9432	0.3625	0.8105	0.066*

H6B	0.9053	0.3446	0.7243	0.066*
H6C	0.7551	0.3263	0.7651	0.066*
C7	1.0077 (7)	0.5912 (5)	0.8347 (3)	0.0310 (13)
C8	1.1416 (8)	0.5985 (5)	0.8954 (3)	0.0411 (15)
H8A	1.2510	0.6359	0.8860	0.062*
H8B	1.1311	0.5202	0.8993	0.062*
H8C	1.1314	0.6443	0.9410	0.062*
C9	0.6137 (8)	0.8441 (5)	0.9821 (3)	0.0413 (15)
H9A	0.5707	0.7590	0.9656	0.062*
H9B	0.5199	0.8724	0.9818	0.062*
H9C	0.6838	0.8694	1.0316	0.062*
C10	0.7156 (7)	0.8919 (5)	0.9321 (3)	0.0294 (12)
C11	0.8115 (7)	1.0035 (5)	0.9359 (3)	0.0306 (13)
C12	0.8445 (8)	1.1103 (5)	0.9962 (3)	0.0405 (15)
H12A	0.7680	1.0920	1.0282	0.061*
H12B	0.8268	1.1717	0.9755	0.061*
H12C	0.9603	1.1367	1.0244	0.061*
C13	0.8712 (7)	0.9970 (5)	0.8722 (3)	0.0315 (13)
C14	0.9780 (8)	1.0950 (5)	0.8486 (3)	0.0424 (16)
H14A	1.0240	1.0640	0.8090	0.064*
H14B	1.0697	1.1467	0.8898	0.064*
H14C	0.9103	1.1385	0.8316	0.064*
C15	0.4515 (9)	1.0713 (6)	0.6552 (4)	0.0557 (19)
H15A	0.3498	1.0073	0.6265	0.084*
H15B	0.4671	1.1376	0.6343	0.084*
H15C	0.4411	1.0942	0.7055	0.084*
C16	0.6022 (8)	1.0320 (5)	0.6543 (3)	0.0362 (14)
C17	0.7260 (8)	1.0574 (5)	0.6166 (3)	0.0367 (14)
C18	0.7413 (10)	1.1311 (7)	0.5647 (4)	0.060 (2)
H18A	0.6539	1.0903	0.5200	0.090*
H18B	0.8514	1.1469	0.5532	0.090*
H18C	0.7286	1.2045	0.5869	0.090*
C19	0.8315 (7)	0.9969 (5)	0.6371 (3)	0.0325 (13)
C20	0.9860 (7)	0.9949 (5)	0.6126 (3)	0.0382 (14)
H20A	1.0500	0.9652	0.6453	0.057*
H20B	1.0541	1.0738	0.6135	0.057*
H20C	0.9556	0.9445	0.5630	0.057*
C21	0.5872 (8)	0.7215 (6)	0.5339 (3)	0.0446 (16)
H21A	0.5519	0.7419	0.5792	0.067*
H21B	0.5045	0.6485	0.5021	0.067*
H21C	0.5961	0.7834	0.5093	0.067*
C22	0.7537 (7)	0.7075 (5)	0.5509 (3)	0.0320(13)
C23	0.8465 (8)	0.6761 (5)	0.5009 (3)	0.0365 (14)
C24	0.8004 (9)	0.6557 (7)	0.4202 (3)	0.057 (2)
H24A	0.8927	0.6445	0.3994	0.086*
H24B	0.7785	0.7231	0.4088	0.086*
H24C	0.6998	0.5863	0.3993	0.086*
C25	0.9900 (7)	0.6730 (5)	0.5424 (3)	0.0306 (13)
C26	1.1374 (8)	0.6458 (6)	0.5223 (3)	0.0391 (15)
	× /	× /	× /	· · ·

H26A	1.2356	0.7173	0.5368	0.059*
H26B	1.1128	0.6124	0.4696	0.059*
H26C	1.1600	0.5900	0.5475	0.059*
N11	0.5554 (6)	0.5762 (4)	0.8632 (3)	0.0380 (12)
N12	0.4330 (6)	0.4886 (4)	0.8116 (3)	0.0346 (12)
H12	0.3677	0.4994	0.7775	0.042*
C27	0.2961 (9)	0.2742 (5)	0.7681 (4)	0.0502 (17)
H27A	0.1842	0.2746	0.7714	0.075*
H27B	0.3111	0.2061	0.7814	0.075*
H27C	0.3086	0.2710	0.7182	0.075*
C28	0.4246 (8)	0.3820 (5)	0.8189 (3)	0.0343 (13)
C29	0.5492 (7)	0.4002 (5)	0.8791 (3)	0.0348 (14)
C30	0.6010 (10)	0.3130 (6)	0.9091 (4)	0.058 (2)
H30A	0.5258	0.2347	0.8815	0.088*
H30B	0.5955	0.3252	0.9603	0.088*
H30C	0.7157	0.3217	0.9052	0.088*
C31	0.6268 (8)	0.5218 (5)	0.9051 (3)	0.0401 (15)
C32	0.7669 (8)	0.5892 (6)	0.9702 (4)	0.0469 (17)
H32A	0.8139	0.6697	0.9678	0.070*
H32B	0.8539	0.5543	0.9709	0.070*
H32C	0.7248	0.5880	1.0145	0.070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0254 (4)	0.0281 (4)	0.0206 (4)	0.0071 (3)	0.0026 (3)	0.0065 (3)
S1	0.0277 (8)	0.0426 (9)	0.0462 (10)	0.0088 (7)	0.0072 (7)	0.0246 (7)
S2	0.0279 (8)	0.0463 (9)	0.0267 (8)	0.0077 (7)	-0.0017 (6)	-0.0020 (6)
N1	0.033 (3)	0.028 (2)	0.025 (3)	0.006 (2)	0.000 (2)	0.005 (2)
N2	0.032 (3)	0.032 (3)	0.021 (2)	0.005 (2)	-0.003 (2)	0.003 (2)
N3	0.029 (2)	0.029 (2)	0.018 (2)	0.006 (2)	0.0010 (19)	0.0046 (18)
N4	0.035 (3)	0.027 (2)	0.022 (2)	0.009 (2)	-0.004 (2)	0.0030 (19)
N5	0.031 (3)	0.025 (2)	0.024 (2)	0.004 (2)	0.004 (2)	0.0057 (19)
N6	0.040 (3)	0.026 (2)	0.022 (2)	0.005 (2)	0.003 (2)	0.0064 (19)
N7	0.028 (3)	0.044 (3)	0.033 (3)	0.018 (2)	0.016 (2)	0.017 (2)
N8	0.032 (3)	0.031 (3)	0.028 (3)	0.010 (2)	0.006 (2)	0.010(2)
N9	0.021 (2)	0.039 (3)	0.029 (3)	0.013 (2)	0.007 (2)	0.014 (2)
N10	0.032 (3)	0.040 (3)	0.021 (2)	0.014 (2)	0.005 (2)	0.011 (2)
C1	0.027 (3)	0.026 (3)	0.024 (3)	0.013 (2)	0.003 (2)	0.010(2)
C2	0.040 (3)	0.025 (3)	0.017 (3)	0.010 (2)	0.010 (2)	0.006 (2)
C3	0.036 (3)	0.031 (3)	0.030 (3)	0.007 (3)	0.001 (3)	0.001 (2)
C4	0.030 (3)	0.030 (3)	0.022 (3)	0.005 (2)	0.006 (2)	0.007 (2)
C5	0.035 (3)	0.029 (3)	0.028 (3)	0.011 (3)	0.012 (3)	0.008 (2)
C6	0.051 (4)	0.034 (3)	0.043 (4)	0.011 (3)	0.009 (3)	0.009 (3)
C7	0.038 (3)	0.034 (3)	0.022 (3)	0.014 (3)	0.007 (2)	0.008 (2)
C8	0.056 (4)	0.044 (4)	0.025 (3)	0.023 (3)	0.001 (3)	0.010 (3)
С9	0.044 (4)	0.049 (4)	0.023 (3)	0.008 (3)	0.009 (3)	0.004 (3)
C10	0.025 (3)	0.040 (3)	0.018 (3)	0.010 (2)	0.000 (2)	0.002 (2)

C11	0.031 (3)	0.034 (3)	0.022 (3)	0.013 (3)	-0.001 (2)	0.000 (2)
C12	0.040 (4)	0.036 (3)	0.034 (3)	0.008 (3)	0.003 (3)	-0.003 (3)
C13	0.032 (3)	0.030 (3)	0.029 (3)	0.008 (2)	0.003 (2)	0.007 (2)
C14	0.049 (4)	0.024 (3)	0.041 (4)	-0.001 (3)	0.007 (3)	0.004 (3)
C15	0.055 (4)	0.068 (5)	0.068 (5)	0.038 (4)	0.030 (4)	0.033 (4)
C16	0.036 (3)	0.036 (3)	0.042 (4)	0.017 (3)	0.010 (3)	0.015 (3)
C17	0.044 (4)	0.042 (3)	0.033 (3)	0.019 (3)	0.010 (3)	0.019 (3)
C18	0.070 (5)	0.067 (5)	0.061 (5)	0.030 (4)	0.027 (4)	0.038 (4)
C19	0.037 (3)	0.032 (3)	0.026 (3)	0.009 (3)	0.006 (3)	0.009 (2)
C20	0.036 (3)	0.049 (4)	0.037 (4)	0.018 (3)	0.016 (3)	0.018 (3)
C21	0.037 (3)	0.071 (5)	0.021 (3)	0.018 (3)	-0.001 (3)	0.007 (3)
C22	0.032 (3)	0.042 (3)	0.024 (3)	0.015 (3)	0.005 (2)	0.012 (2)
C23	0.043 (4)	0.045 (4)	0.023 (3)	0.017 (3)	0.008 (3)	0.008 (3)
C24	0.060 (5)	0.085 (6)	0.030 (4)	0.035 (4)	0.009 (3)	0.009 (4)
C25	0.038 (3)	0.034 (3)	0.027 (3)	0.018 (3)	0.011 (3)	0.013 (2)
C26	0.040 (4)	0.052 (4)	0.034 (3)	0.024 (3)	0.014 (3)	0.014 (3)
N11	0.039 (3)	0.037 (3)	0.032 (3)	0.005 (2)	0.006 (2)	0.011 (2)
N12	0.037 (3)	0.035 (3)	0.028 (3)	0.008 (2)	0.001 (2)	0.013 (2)
C27	0.057 (4)	0.041 (4)	0.046 (4)	0.011 (3)	0.008 (3)	0.010 (3)
C28	0.039 (3)	0.034 (3)	0.030 (3)	0.010 (3)	0.012 (3)	0.011 (3)
C29	0.035 (3)	0.040 (3)	0.037 (3)	0.012 (3)	0.014 (3)	0.022 (3)
C30	0.069 (5)	0.057 (5)	0.063 (5)	0.027 (4)	0.020 (4)	0.037 (4)
C31	0.045 (4)	0.040 (3)	0.032 (3)	0.008 (3)	0.004 (3)	0.017 (3)
C32	0.037 (4)	0.051 (4)	0.043 (4)	0.005 (3)	0.000 (3)	0.017 (3)

Geometric parameters (Å, °)

Ni1—N1	2.071 (5)	C13—C14	1.495 (8)
Ni1—N2	2.065 (5)	C14—H14A	0.9800
Ni1—N3	2.128 (5)	C14—H14B	0.9800
Ni1—N6	2.111 (5)	C14—H14C	0.9800
Ni1—N8	2.120 (5)	C15—C16	1.529 (9)
Ni1—N10	2.108 (5)	C15—H15A	0.9800
S1—C1	1.632 (6)	C15—H15B	0.9800
S2—C2	1.645 (6)	C15—H15C	0.9800
N1—C2	1.171 (7)	C16—C17	1.378 (8)
N2—C1	1.177 (7)	C17—C19	1.415 (8)
N3—C4	1.347 (7)	C17—C18	1.491 (8)
N3—N4	1.354 (6)	C18—H18A	0.9800
N4—C7	1.360 (7)	C18—H18B	0.9800
N4—H4	0.8599	C18—H18C	0.9800
N5—C10	1.337 (7)	C19—C20	1.488 (8)
N5—N6	1.371 (6)	C20—H20A	0.9800
N5—H5	0.8597	С20—Н20В	0.9800
N6—C13	1.358 (7)	C20—H20C	0.9800
N7—C16	1.337 (7)	C21—C22	1.498 (8)
N7—N8	1.372 (6)	C21—H21A	0.9800
N7—H7	0.8595	C21—H21B	0.9800
N8—C19	1.339 (7)	C21—H21C	0.9800
			0.20

N9—C25	1.347 (7)	C22—C23	1.416 (8)
N9—N10	1.354 (6)	C23—C25	1.384 (8)
N9—H9	0.8595	C23—C24	1.496 (8)
N10—C22	1.336 (7)	C24—H24A	0.9800
C3—C4	1.489 (7)	C24—H24B	0.9800
С3—НЗА	0.9800	C24—H24C	0.9800
С3—Н3В	0.9800	C25—C26	1.501 (8)
С3—НЗС	0.9800	C26—H26A	0.9800
C4—C5	1.411 (8)	C26—H26B	0.9800
C5—C7	1.383 (8)	C26—H26C	0.9800
C5—C6	1.509 (8)	N11—C31	1.353 (7)
С6—Н6А	0.9800	N11—N12	1.355 (6)
С6—Н6В	0.9800	N12—C28	1.356 (7)
С6—Н6С	0.9800	N12—H12	0.8600
С7—С8	1.482 (8)	C27—C28	1.492 (8)
C8—H8A	0.9800	C27—H27A	0.9800
C8—H8B	0.9800	С27—Н27В	0.9800
C8—H8C	0.9800	С27—Н27С	0.9800
C9—C10	1.496 (8)	C28—C29	1.385 (8)
С9—Н9А	0.9800	C29—C31	1.411 (8)
С9—Н9В	0.9800	C29—C30	1.488 (8)
С9—Н9С	0.9800	C30—H30A	0.9800
C10-C11	1.372 (8)	С30—Н30В	0.9800
C11—C13	1.401 (8)	С30—Н30С	0.9800
C11—C12	1.504 (7)	C31—C32	1.492 (8)
C12—H12A	0.9800	C32—H32A	0.9800
C12—H12B	0.9800	С32—Н32В	0.9800
C12—H12C	0.9800	С32—Н32С	0.9800
N2—Ni1—N1	175.40 (18)	C13—C14—H14A	109.5
N2—Ni1—N10	93.84 (18)	C13—C14—H14B	109.5
N1—Ni1—N10	89.50 (18)	H14A—C14—H14B	109.5
N2—Ni1—N6	88.00 (19)	C13—C14—H14C	109.5
N1—Ni1—N6	88.70 (19)	H14A—C14—H14C	109.5
N10—Ni1—N6	178.05 (18)	H14B—C14—H14C	109.5
N2—Ni1—N8	88.65 (19)	C16—C15—H15A	109.5
N1—Ni1—N8	94.61 (18)	C16—C15—H15B	109.5
N10—Ni1—N8	88.24 (18)	H15A—C15—H15B	109.5
N6—Ni1—N8	91.15 (19)	C16—C15—H15C	109.5
N2—Ni1—N3	89.78 (18)	H15A—C15—H15C	109.5
N1—Ni1—N3	87.06 (18)	H15B—C15—H15C	109.5
N10—Ni1—N3	89.98 (18)	N7—C16—C17	107.8 (5)
N6—Ni1—N3	90.68 (18)	N7—C16—C15	122.1 (6)
N8—Ni1—N3	177.55 (16)	C17—C16—C15	130.1 (6)
C2—N1—Ni1	161.9 (4)	C16—C17—C19	105.0 (5)
C1—N2—Ni1	166.9 (4)	C16—C17—C18	126.8 (6)
C4—N3—N4	104.6 (4)	C19—C17—C18	128.2 (6)
C4—N3—Ni1	136.2 (4)	C17—C18—H18A	109.5
N4—N3—Ni1	118.8 (3)	C17—C18—H18B	109.5
N3—N4—C7	113.0 (4)	H18A—C18—H18B	109.5

N3—N4—H4	123.6	C17—C18—H18C	109.5
C7—N4—H4	123.4	H18A—C18—H18C	109.5
C10—N5—N6	112.7 (4)	H18B—C18—H18C	109.5
C10—N5—H5	123.5	N8—C19—C17	110.5 (5)
N6—N5—H5	123.7	N8—C19—C20	122.0 (5)
C13—N6—N5	103.8 (4)	C17—C19—C20	127.5 (5)
C13—N6—Ni1	135.0 (4)	С19—С20—Н20А	109.5
N5—N6—Ni1	120.8 (3)	С19—С20—Н20В	109.5
C16—N7—N8	111.5 (5)	H20A—C20—H20B	109.5
C16—N7—H7	124.3	С19—С20—Н20С	109.5
N8—N7—H7	124.2	H20A-C20-H20C	109.5
C19—N8—N7	105.2 (4)	H20B-C20-H20C	109.5
C19—N8—Ni1	135.2 (4)	C22—C21—H21A	109.5
N7—N8—Ni1	118.2 (3)	C22—C21—H21B	109.5
C25—N9—N10	113.9 (4)	H21A—C21—H21B	109.5
C25—N9—H9	122.9	C22—C21—H21C	109.5
N10—N9—H9	123.3	H21A—C21—H21C	109.5
C22—N10—N9	104.6 (4)	H21B—C21—H21C	109.5
C22—N10—Ni1	136.7 (4)	N10-C22-C23	110.4 (5)
N9—N10—Ni1	117.8 (3)	N10-C22-C21	122.2 (5)
N2—C1—S1	177.8 (5)	C23—C22—C21	127.4 (5)
N1—C2—S2	178.7 (5)	C25—C23—C22	106.0 (5)
С4—С3—Н3А	109.5	C25—C23—C24	127.6 (6)
С4—С3—Н3В	109.5	C22—C23—C24	126.4 (6)
НЗА—СЗ—НЗВ	109.5	C23—C24—H24A	109.5
С4—С3—Н3С	109.5	C23—C24—H24B	109.5
НЗА—СЗ—НЗС	109.5	H24A—C24—H24B	109.5
НЗВ—СЗ—НЗС	109.5	C23—C24—H24C	109.5
N3—C4—C5	110.8 (5)	H24A—C24—H24C	109.5
N3—C4—C3	122.5 (5)	H24B—C24—H24C	109.5
C5—C4—C3	126.7 (5)	N9—C25—C23	105.2 (5)
C7—C5—C4	105.7 (5)	N9—C25—C26	122.5 (5)
C7—C5—C6	127.0 (5)	C23—C25—C26	132.3 (5)
C4—C5—C6	127.2 (5)	С25—С26—Н26А	109.5
С5—С6—Н6А	109.5	С25—С26—Н26В	109.5
С5—С6—Н6В	109.5	H26A—C26—H26B	109.5
H6A—C6—H6B	109.5	C25—C26—H26C	109.5
С5—С6—Н6С	109.5	H26A—C26—H26C	109.5
Н6А—С6—Н6С	109.5	H26B—C26—H26C	109.5
H6B—C6—H6C	109.5	C31—N11—N12	104.3 (5)
N4—C7—C5	105.9 (5)	N11—N12—C28	113.0 (5)
N4—C7—C8	121.8 (5)	N11—N12—H12	123.6
C5—C7—C8	132.2 (5)	C28—N12—H12	123.4
С7—С8—Н8А	109.5	С28—С27—Н27А	109.5
С7—С8—Н8В	109.5	С28—С27—Н27В	109.5
H8A—C8—H8B	109.5	H27A—C27—H27B	109.5
С7—С8—Н8С	109.5	С28—С27—Н27С	109.5
H8A—C8—H8C	109.5	H27A—C27—H27C	109.5
H8B—C8—H8C	109.5	H27B—C27—H27C	109.5

С10—С9—Н9А	109.5	N12—C28—C29	106.4 (5)
С10—С9—Н9В	109.5	N12—C28—C27	121.3 (5)
Н9А—С9—Н9В	109.5	C29—C28—C27	132.2 (6)
С10—С9—Н9С	109.5	C28—C29—C31	105.2 (5)
Н9А—С9—Н9С	109.5	C28—C29—C30	128.9 (6)
Н9В—С9—Н9С	109.5	C31—C29—C30	125.8 (6)
N5-C10-C11	107.0 (5)	С29—С30—Н30А	109.5
N5-C10-C9	121.9 (5)	С29—С30—Н30В	109.5
C11—C10—C9	131.1 (5)	H30A—C30—H30B	109.5
C10-C11-C13	105.9 (5)	С29—С30—Н30С	109.5
C10-C11-C12	126.7 (5)	H30A—C30—H30C	109.5
C13—C11—C12	127.4 (6)	H30B-C30-H30C	109.5
C11—C12—H12A	109.5	N11—C31—C29	111.0 (5)
C11—C12—H12B	109.5	N11—C31—C32	121.1 (6)
H12A—C12—H12B	109.5	C29—C31—C32	127.8 (6)
C11—C12—H12C	109.5	C31—C32—H32A	109.5
H12A—C12—H12C	109.5	С31—С32—Н32В	109.5
H12B-C12-H12C	109.5	H32A—C32—H32B	109.5
N6—C13—C11	110.6 (5)	С31—С32—Н32С	109.5
N6—C13—C14	121.8 (5)	H32A—C32—H32C	109.5
C11—C13—C14	127.5 (5)	H32B—C32—H32C	109.5
N10-Ni1-N1-C2	-128.8 (14)	C6—C5—C7—N4	178.0 (6)
N6—Ni1—N1—C2	52.0 (14)	C4—C5—C7—C8	-175.2 (6)
N8—Ni1—N1—C2	143.1 (14)	C6—C5—C7—C8	0.8 (11)
N3—Ni1—N1—C2	-38.7 (14)	N6—N5—C10—C11	-0.2 (6)
N10-Ni1-N2-C1	160 (2)	N6—N5—C10—C9	177.4 (5)
N6—Ni1—N2—C1	-21 (2)	N5-C10-C11-C13	0.1 (6)
N8—Ni1—N2—C1	-112 (2)	C9—C10—C11—C13	-177.2 (6)
N3—Ni1—N2—C1	70 (2)	N5-C10-C11-C12	179.9 (5)
N2—Ni1—N3—C4	50.6 (5)	C9—C10—C11—C12	2.6 (10)
N1—Ni1—N3—C4	-132.7 (5)	N5-N6-C13-C11	-0.1 (6)
N10—Ni1—N3—C4	-43.2 (6)	Ni1—N6—C13—C11	172.1 (4)
N6—Ni1—N3—C4	138.6 (6)	N5-N6-C13-C14	-178.4 (5)
N2—Ni1—N3—N4	-136.9 (4)	Ni1—N6—C13—C14	-6.2 (9)
N1—Ni1—N3—N4	39.7 (4)	C10-C11-C13-N6	0.0 (7)
N10—Ni1—N3—N4	129.2 (4)	C12-C11-C13-N6	-179.8 (5)
N6—Ni1—N3—N4	-48.9 (4)	C10-C11-C13-C14	178.2 (6)
C4—N3—N4—C7	1.0 (6)	C12—C11—C13—C14	-1.7 (10)
Ni1—N3—N4—C7	-173.6 (4)	N8—N7—C16—C17	-1.0 (7)
C10-N5-N6-C13	0.2 (6)	N8—N7—C16—C15	179.5 (6)
C10—N5—N6—Ni1	-173.4 (3)	N7—C16—C17—C19	0.6 (7)
N2—Ni1—N6—C13	-129.0 (6)	C15-C16-C17-C19	-180.0 (6)
N1—Ni1—N6—C13	54.2 (6)	N7—C16—C17—C18	179.5 (6)
N8—Ni1—N6—C13	-40.4 (6)	C15—C16—C17—C18	-1.0 (12)
N3—Ni1—N6—C13	141.2 (6)	N7—N8—C19—C17	-0.6 (6)
N2-Ni1-N6-N5	42.2 (4)	Ni1—N8—C19—C17	165.1 (4)
N1—Ni1—N6—N5	-134.6 (4)	N7—N8—C19—C20	178.9 (5)
N8—Ni1—N6—N5	130.8 (4)	Ni1—N8—C19—C20	-15.4 (9)
N3—Ni1—N6—N5	-47.6 (4)	C16—C17—C19—N8	0.0 (7)

C16—N7—N8—C19	1.0 (6)	C18—C17—C19—N8	-178.9 (6)
C16—N7—N8—Ni1	-167.6 (4)	C16-C17-C19-C20	-179.5 (6)
N2—Ni1—N8—C19	-132.4 (5)	C18—C17—C19—C20	1.6 (11)
N1—Ni1—N8—C19	50.8 (6)	N9-N10-C22-C23	-1.9 (6)
N10-Ni1-N8-C19	-38.6 (5)	Ni1—N10—C22—C23	166.1 (4)
N6—Ni1—N8—C19	139.6 (5)	N9-N10-C22-C21	179.5 (5)
N2—Ni1—N8—N7	31.9 (4)	Ni1—N10—C22—C21	-12.6 (9)
N1—Ni1—N8—N7	-144.9 (4)	N10-C22-C23-C25	2.2 (7)
N10—Ni1—N8—N7	125.7 (4)	C21—C22—C23—C25	-179.2 (6)
N6—Ni1—N8—N7	-56.1 (4)	N10-C22-C23-C24	-175.4 (6)
C25—N9—N10—C22	0.9 (6)	C21—C22—C23—C24	3.2 (11)
C25—N9—N10—Ni1	-169.8 (4)	N10—N9—C25—C23	0.5 (6)
N2-Ni1-N10-C22	46.3 (6)	N10-N9-C25-C26	179.1 (5)
N1—Ni1—N10—C22	-136.8 (6)	C22—C23—C25—N9	-1.6 (6)
N8—Ni1—N10—C22	-42.2 (6)	C24—C23—C25—N9	176.0 (6)
N3—Ni1—N10—C22	136.1 (6)	C22—C23—C25—C26	-180.0 (6)
N2—Ni1—N10—N9	-146.9 (4)	C24—C23—C25—C26	-2.4 (11)
N1—Ni1—N10—N9	29.9 (4)	C31—N11—N12—C28	-0.2 (7)
N8—Ni1—N10—N9	124.6 (4)	N11—N12—C28—C29	0.0 (7)
N3—Ni1—N10—N9	-57.1 (4)	N11—N12—C28—C27	178.9 (5)
N4—N3—C4—C5	0.4 (6)	N12-C28-C29-C31	0.3 (7)
Ni1—N3—C4—C5	173.5 (4)	C27—C28—C29—C31	-178.5 (7)
N4—N3—C4—C3	-179.8 (5)	N12-C28-C29-C30	-176.4 (6)
Ni1—N3—C4—C3	-6.7 (9)	C27—C28—C29—C30	4.8 (12)
N3—C4—C5—C7	-1.5 (6)	N12—N11—C31—C29	0.4 (7)
C3—C4—C5—C7	178.7 (6)	N12—N11—C31—C32	-178.6 (6)
N3—C4—C5—C6	-177.5 (5)	C28—C29—C31—N11	-0.4 (7)
C3—C4—C5—C6	2.7 (10)	C30-C29-C31-N11	176.4 (6)
N3—N4—C7—C5	-1.9 (6)	C28—C29—C31—C32	178.5 (7)
N3—N4—C7—C8	175.6 (5)	C30-C29-C31-C32	-4.7 (11)
C4—C5—C7—N4	2.0 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
N5—H5…N11	0.86	2.15	2.970 (8)	159		
N7—H7 […] S2 ⁱ	0.86	2.66	3.441 (6)	152		
N9—H9···S1 ⁱⁱ	0.86	2.59	3.348 (6)	148		
N12—H12…S1	0.86	2.49	3.292 (7)	156		
C3—H3A···N2	0.98	2.57	3.338 (9)	135		
C14—H14A…N1	0.98	2.50	3.324 (9)	141		
C20—H20A…N1	0.98	2.49	3.371 (8)	150		
C21—H21A···N2	0.98	2.48	3.326 (8)	145		
Symmetry codes: (i) $x-1$, y , z ; (ii) $x+1$, y , z .						

Fig. 1

